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High-throughput sequencing-by-synthesis, also known as 
next-generation sequencing (NGS), is one of the most 
powerful methods available today for highly multiplexed 

characterization of DNA at many genetic loci1,2. Next-generation 
sequencing is used routinely to detect DNA sequence variants with 
an allele frequency of ≥5%. However, NGS struggles to report sin-
gle nucleotide variants (SNVs) with low variant-allele frequencies 
(VAFs) because all current NGS platforms have an average intrin-
sic error of at least 0.2%3,4. Depending on the size of the panel, and 
the expertise of the laboratory, the VAF limit of detection (LoD) 
for standard targeted NGS panels ranges between 1% and 5%. 
Error-correction methods based on unique molecular identifiers 
(UMIs) have been proposed and can circumvent the NGS intrinsic 
error limitation to achieve SNV LoDs of about 0.1%5–7, but these 
generally require sequencing to extremely high depths of 25,000× 
or more. This results in a per-sample NGS cost of more than 
US$1,000 for even moderate-size panels (for example, the 70-gene 
Guardant 360 panel8,9), rendering sensitive detection of SNVs with 
a VAF of below 1% unaffordable for many researchers, clinicians 
and patients.

Simultaneously, there is growing research and clinical demand 
for high-sensitivity detection of DNA sequence variants at a low 
VAF. Examples for which low-VAF detection is needed include 
cell-free DNA (cfDNA) profiling for non-invasive cancer therapy 
guidance and post-treatment monitoring10,11, rare-microbe detec-
tion for microbiome profiling12,13 and persistent bacterial sub-
populations contributing to antibiotic resistance 14,15 Polymerase 
chain reaction (PCR)-based methods, such as digital PCR16,17 and 
allele-specific PCR18, can be used to detect and quantitate one or 
a few suspected DNA variants with a VAF of as low as 0.1% but 
cannot reasonably scale to fulfil the multiplexing needs of many 
research and clinical applications.

Here we present multiplex blocker displacement amplification 
(mBDA), a library preparation method that allows for robust NGS 
detection and quantitation of SNVs with a VAF as low as 0.019% 
using a sequencing depth of only 250×. Multiplex BDA functions 
by selectively enriching DNA sequence variants during a multi-
plex PCR target-enrichment step. Unlike other allele-enrichment 
methods19, mBDA can scale well to multiplex panels; we demon-
strate a 300-fold median enrichment in an 80-plex panel. Because 
the post-mBDA NGS library exhibits VAFs far exceeding the NGS 
intrinsic error rate, low-depth sequencing is sufficient for variant 
detection and no error correction is needed. Furthermore, because 
the fold-enrichments of different variants are conserved across 
libraries and samples, it is possible to accurately quantitate the 
initial sample variants with 95% accuracy within a factor of two.  
By reducing the number of NGS reads needed by over 100-fold, 
mBDA uniquely enables the affordable sequencing of DNA variants 
with very low VAFs on lower-throughput NGS instruments such as 
the Illumina MiSeq.

Results
The mBDA method allows highly multiplex sequence-selective 
PCR amplification of single nucleotide polymorphism (SNP) alleles 
through the use of rationally designed ‘blocker’ oligonucleotides 
that perfectly bind to the intended SNP allele20. The binding region 
of the blocker overlaps with that of the forward PCR primer, result-
ing in a competitive hybridization reaction in which the forward 
primer must displace the blocker to bind to the DNA template  
(Fig. 1a). The blocker sequence is designed to bind more strongly 
than the forward primer to the DNA templates bearing the intended 
SNP allele but less strongly to DNA templates bearing the variant 
SNP allele. Consequently, the variant templates are amplified with 
notably higher yield per PCR cycle than the wild-type templates. 
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Through the course of many PCR cycles, the variant allele can be 
preferentially amplified with a 1,000-fold higher efficiency than the 
wild-type allele.

The mBDA NGS library preparation workflow takes less than 6 h 
from DNA to library; the process is summarized in Fig. 1b. To dem-
onstrate allele enrichment with mBDA, we constructed an 80-plex 
mBDA NGS panel targeting 80 common human SNPs. These 80 
SNPs were selected such that the NA18537 and NA18562 human 
genomic DNA (gDNA) samples were homozygous for different 
alleles21,22. A 99.8%:0.2% mixture of NA18537 and NA18562 gDNA 
was thus an easily formulated reference sample with 0.2% VAF in all 
80 SNP loci, when considering the NA18537 alleles as the wild type. 
Figure 1c shows the Illumina MiSeq sequencing results on the 0.2% 
VAF sample using a standard multiplex PCR target-enrichment 

workflow. The number of reads aligned to the variant allele for each 
SNP locus was roughly 500-fold lower than the intended allele, con-
sistent with expectations. Note that not all of these variants can be 
confidently called from these data; we will discuss the VAF LoD in 
the next section.

The mBDA NGS results on a different aliquot of the 99.8%:0.2% 
NA18537/NA18562 sample are shown in Fig. 1d for comparison. 
Despite using ninefold fewer total reads than the standard amplicon 
NGS library, the mBDA NGS library exhibited higher variant-allele 
read depth because the number of intended allele reads were dramat-
ically reduced. Figure 1e displays the variant-read fraction (VRF) for 
each SNP locus, with the median VRF increasing from 0.2% in the 
standard NGS library to about 30% in the mBDA NGS library. Thus, 
the variant SNP alleles here are enriched by a median of 150-fold.
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Fig. 1 | Allele enrichment with mBDA enables the detection of rare variants using low-depth sequencing. a, In mBDA, rationally designed blocker 
oligonucleotides compete with forward PCR primers in binding to the DNA templates at the loci of interest. The blocker is designed to be perfectly 
complementary to the wild-type DNA sequence. Any DNA sequence variant in the enrichment region (approximately 20 nt) results in mismatched blocker 
binding, leading to preferential PCR amplification of the variant. In highly multiplexed settings, a DNA sample may possess sequence variants in only 
a small fraction of the tested loci, resulting in amplicons being dominated by a small number of amplicons bearing the variant sequences. b, The entire 
library preparation workflow of mBDA NGS takes less than 6 h. c, Summary of NGS results on a library constructed using standard multiplex PCR target 
enrichment. Here we used a 300 ng sample of a 99.8%:0.2% mixture gDNA from the NA18537 and NA18562 cell lines. The panel targeted 80 loci on the 
human genome bearing SNPs in which NA18537 and NA18562 were homozygous for different alleles. Consequently, the VAFs of the NA18562-specific 
alleles were expected to be approximately 0.2% for all 80 amplicons. Bottom: histogram plot of the log10(Variant allele reads). d, Summary of the NGS 
results on a library constructed using mBDA on 300 ng of 99.8%:0.2% NA18537:NA18562. Compared with the library in c, ninefold fewer NGS reads were 
used but the variant alleles were sequenced to a higher depth. The SNPs were ranked as per c. Bottom: histogram plot of the log10(Variant allele reads). 
e, Summary of the VRF values for each SNP locus in the libraries described in c and d. The standard multiplex PCR NGS library showed a median VRF of 
approximately 0.2%, consistent with expectations.
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See Supplementary Section 1 for the SNP loci and mBDA design 
details, and Supplementary Section 2 for the NGS protocol opti-
mization experiments. We used a custom bioinformatics pipe-
line to filter the NGS reads from FASTQ files, make variant calls 
and determine the corresponding VRF values (Supplementary  
Section 3). Standard bioinformatics tools such as Picard (http://
broadinstitute.github.io/picard/) and GATK (https://gatk.broadin-
stitute.org/hc/en-us) are optimized for hybrid-capture NGS panels, 
and we and others have observed these software to exhibit both 
false-positive and false-negative errors when making variant calls in 
amplicon sequencing libraries.

Quantitation of the VAF from mBDA NGS results. The rela-
tionship between the initial VAF in the sample and the observed 
VRF in the library can be described mathematically, based on the 
variant-allele enrichment fold (EF):

VRF =
EF× VAF

EF× VAF + (1− VAF ) . (1)

Note that VRF is not linear with EF; VRF values close to 100% 
imply much greater EF values. For example, assuming VAF = 0.1%, 
VRF ≈ 10% when EF = 100, VRF ≈ 50% when EF = 1,000 and 
VRF ≈ 90% when EF = 10,000 (Fig. 2a).

The EF values will vary based on the sequence identity of the 
variant and intended alleles as well as the neighbouring context 
sequence. To calculate the EF for each of the 80 SNP loci, we ran a 

series of different NGS libraries using samples with a known VAF 
(mixing NA18537 and NA18562). Rearranging equation (1) from 
above, we obtain:

EF =
VRF× (1− VAF )
VAF× (1− VRF ) (2)

log(EF) = log
[

VRF
(1− VRF )

]

− log
[

VAF
(1− VAF )

]

(3)

The transformed relationship between EF, VAF and VRF is plotted 
in Fig. 2a. Figure 2b shows the maximum, minimum and median 
EF values calculated for each SNP locus from seven different mBDA 
NGS libraries with VAFs of 0.05–3%. Among the 80 SNP loci, 100% 
of the median EF values were greater than 10, 96% of the median 
EF values were greater than 30 and 85% of the median EF values  
were greater than 100. See Supplementary Section 4 for the EF  
calibration experiments.

The variation in EF values means that different LoDs are achiev-
able for different mutations. Given the standard NGS LoD of 2% 
VAF, an EF value of ten corresponds to an LoD of about 0.2% VAF 
and an EF value of 30 corresponds to an LoD of 0.067% VAF. Thus, 
for the great majority of variants, the LoD for mBDA is not bottle-
necked by the varying EF values but rather by the quantity of sample 
input and/or DNA damage.
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Fig. 2 | Quantitation of variant VAFs based on observed VRF values from mBDA libraries. a, Theoretical relationship between VAF and VRF for  
different allele EF values. The relationship between (1− VRF )

VRF  and (1− VAF )
VAF  is expected to be linear, with a slope of one and an intercept of log10(EF).  

The EF values are expected to vary for different SNPs but are conserved across different experiments and VAFs for the same SNP allele.  
b, Summary of the inferred EF for each of the n = 80 variant SNP alleles based on a set of n = 7 calibration mBDA NGS libraries using samples  
with a VAF of 0.05, 0.1, 0.2, 0.5, 1, 2 and 3%. The dots show the median values and the error bars show the maximum and minimum EF values.  
The 0.05% VAF sample used 200 ng gDNA input; all other samples used 50 ng gDNA input. c, Relative EF values for different VAF inputs. The EF/
(median EF) ratio can also be interpreted as the quantitation error for the calibration samples with known VAFs. More than 95% of the inferred VAFs are 
quantitated accurately to within a factor of two when VAF ≥ 0.1%. d, Comparison of the VAF LoD for standard amplicon NGS and mBDA NGS based on 
triplicate NGS libraries for each method. Here we define the LoD as the maximum inferred VAF from a pure wild-type (0% VAF) sample; the red dots 
show the inferred VAFs for each of the 80 SNPs. For the mBDA NGS, the VAF is calculated based on the median EF from the seven EF values summarized 
in c and d. For standard amplicon NGS, the VAF is calculated as the VRF. The VAF LoD was improved more than eightfold by mBDA relative to  
standard amplicon NGS.
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Figure 2c shows the relative values of EF at each VAF compared 
with the median EF values.

The median values of EF/(median EF) are close to one for muta-
tions with a VAF ≥ 0.1%, indicating that there is limited systematic 
bias in VAF quantitation. The systematic upward bias of EF

median EF  
at 0.05% VAF may reflect false positives due to DNA polymerase 
misincorporation errors.

To determine the LoD of both standard amplicon and mBDA 
NGS, we ran triplicate NGS libraries on pure NA18537 DNA sam-
ples that were nominally 0% VAF for all 80 SNP loci. The VAF LoD 
was determined to be 0.16% for the standard amplicon NGS, based 
on the maximum observed VRF (y axis in Fig. 2d). For the mBDA 
NGS, the VAF LoD was determined to be 0.019%, based on the max-
imum VAF values calculated from the VRF and median EF values  
(x axis in Fig. 2d). Thus, the mBDA NGS method improved the VAF 
LoD by roughly eightfold compared with standard amplicon NGS 
because it eliminated the false-positive variant calls from the NGS 
intrinsic error. The remaining false-positive errors were suspected to 
be primarily due to the misincorporation of incorrect nucleotides by 
the DNA polymerase during the early cycles of the PCR23.

Low-VAF variant calls from the mBDA NGS results. We next 
applied the mBDA NGS method to DNA samples with low frac-
tions (0.07–0.25%) of conspecific contaminants (Fig. 3a). Because 
of the notable reduction in NGS reads required by the mBDA NGS 
libraries, we were able to run 21 different DNA samples on a single 
Illumina MiSeq chip while maintaining sensitivity to very low VAFs. 
In each of the libraries, the inferred VAFs for heterozygous alleles 
(regions shaded in green) and homozygous variant alleles (orange 
regions) are generally consistent with expectations, with >80% of 
the VAFs within a factor of two of the median for each group.

By contrast, with standard amplicon NGS, only two NGS librar-
ies could be run on a MiSeq chip (Fig. 3b; MiSeq-2 and MiSeq-2 
repeat) and roughly 20% of the homozygous intended alleles had 
inferred VAFs of more than 0.02%. When comparing the results 
from mBDA NGS and amplicon NGS on the same sample (roughly 
0.18% HeLa in NA18537), we saw that the standard NGS method 
had somewhat tighter distributions of called VAFs than mBDA 
NGS. However, there was one heterozygous allele outlier with an 
expected VAF of 0.09% that produced a variant call of 0.58% VAF.

We could calculate the false-positive and false-negative rates 
of the variant-allele calls for the 1,760 mBDA NGS sample–locus 

combinations, using the VAF LoD of 0.019% established in Fig. 3e. 
The overall specificity of the variant calls was 98.42%, and the sen-
sitivity was 95.12% for the homozygous variant alleles and 95.04% 
for the heterozygous variant alleles (Fig. 3d). A change in the VAF 
LoD threshold would result in a trade-off between the relative sen-
sitivity and specificity (Fig. 3e); the area under the receiver opera-
tor characteristic was calculated to be 0.9968. For comparison, the 
standard amplicon NGS libraries yielded a specificity of 100% and a 
sensitivity of 69.23% for homozygous variant alleles, and a sensitiv-
ity of 9.52% for heterozygous variant alleles, based on the previously 
established VAF LoD of 0.019%.

Because mBDA notably enriches the variant alleles, low-depth 
sequencing is sufficient for the detection and quantitation  
of variants with a low VAF. Figure 3c shows the inferred VAF for 
each of the 80 SNP loci based on the read depth of each SNP. The 
inferred VAFs above the 0.019% LoD quickly converged to their 
final values, typically within 250 reads. Thus, in theory, an NGS 
library as small as 250 × 80 = 20,000 reads would be sufficient to 
achieve a detection of 0.1% VAF. In practice, imperfect amplicon 
depth uniformity across the 80 loci means that roughly 50,000 reads 
are needed to obtain accurate inferred VAF values (Fig. 3f,g and 
Supplementary Section 5).

The experiments shown in Fig. 3 used 300 ng of input DNA to 
minimize the effects of Poisson’s distribution during sample prepa-
ration and do not represent a limitation of the mBDA NGS method. 
In Supplementary Section 6 we show the experimental results for 
mBDA NGS on 10 ng of input DNA (0.18% HeLa contaminant in 
NA18537).

The mBDA VAF LoD we achieve matches or exceeds most 
UMI-based NGS methods, with 50-fold fewer reads required, but is 
worse than the consensus accuracy achieved by Pacific Biosciences 
sequencing of circularized templates. However, PacBio is an  
expensive platform that few laboratories have access to and its  
expensive consumables (on a per-read basis) render it 
non-competitive in the clinical sequencing space. For most clini-
cal applications, the PacBio-level error rates (1 × 10−5–1 × 10−7) 
are unnecessary due to biological sample limitations (for example, 
10 ng DNA from fine-needle aspirates). In addition, the mutation 
VAF LoDs for biological samples are frequently limited by chemi-
cal damage to DNA, such as cytosine deaminations and guanine  
oxidations; PacBio sequencing will not be able to resolve these from 
true mutations.

Fig. 3 | Detection and quantitation of variants with a low VAF using mBDA NGS. a, Results for 20 of 21 mBDA libraries on a single MiSeq-1 chip using 
11.8 × 106 reads. Each library was generated from 300 ng NA18537 gDNA contaminated with 0.07–0.25% of a different human DNA sample. Consequently, 
the homozygous variant alleles had a VAF of 0.07–0.25% and heterozygous variant alleles had a VAF of 0.03–0.13%. The individual library sizes ranged 
from 3.94 × 105 to 5.99 × 105 reads, and the library on-target rates varied from 75.2% to 83.8%. Each graph shows the inferred VAF for all 80 SNPs, sorted 
by contaminant genotype and then by inferred VAF. The black horizontal lines show the median inferred VAF for the homozygous and heterozygous 
variants. b, Comparison libraries using 300 ng NA18537 gDNA contaminated with approximately 0.18% D9 (HeLa) gDNA. One of the 21 mBDA libraries 
on the MiSeq-1 chip (left). Comparison libraries using standard amplicon NGS (middle and right): two repeat libraries using a single MiSeq chip and a total 
of 16.1 × 106 reads (MiSeq-2 and MiSeq-2 repeat). The inferred VAF for homozygous wild-type (NA18537) alleles was notably higher than the inferred VAF 
from the libraries with blockers, and a heterozygous SNP outlier had a VAF of about 57%. a,b, The regions shaded in orange, green and grey indicate the 
homozygous variants, heterozygous variants and homozygous wild type, respectively. c, Inferred VAF as a function of read depth for each SNP allele. Traces 
are coloured according to the contaminant SNP genotype (purple, homozygous variant; green, heterozygous; grey, homozygous wild type). The VAFs 
converge to their final values at a read depth of about 250×; VAFs below our 0.019% LoD are indicated by the region shaded in grey. d, Summary of the 
variant-call accuracy using the 0.019% VAF LoD threshold described in Fig. 4e. All of the inferred VAFs from a are displayed in this beeswarm plot. There 
was a false-positive variant-call rate of 1.58% and a false-negative rate of 4.88% or 4.96%, depending on whether the variant allele was homozygous or 
heterozygous, respectively. e, Receiver-operator-characteristic plot for variant calls using the data in c. Setting the variant-call threshold at 0.04% VAF 
would increase specificity to 100% at the cost of reducing sensitivity to roughly 85%. The area under the receiver-operator-characteristic curve was 
0.9968 for this set of samples and would probably be higher for samples with larger contaminant fractions. f, A random sample of 50,000 reads out of 
the mBDA 0.2% HeLa contaminant library (3.58 × 105 reads in total) gave essentially the same inferred VAFs as the full library. g, Analysis of the number 
reads needed for accurate VAF quantitation using mBDA libraries. Each point shows the mean coefficient of determination (R2) values for the inferred 
VAFs of a read sample versus the full library at different read sample sizes (n = 15 for each read sample size); the error bars show one standard deviation. 
At ≥40,000 reads, the R2 value reliably converged to above 0.99.
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Contaminant identification based on NGS data. In the specific 
application to human cell-line contamination, the mBDA NGS 
data can be used to inform the specific identity of the contami-
nant. In this setting, a database of known possible contaminant 
genotypes is constructed and the mBDA NGS results are compared 
against the genotypes of each potential contaminant. For each 
database genotype j, we can compute the likelihood Lj of it gen-
erating the observed mBDA NGS libraries based on the following  
formula:

Lj =
∏80

i=1
pi,j (4)

where pi,j is the probability of generating the observed variant  
call at locus i based on a true variant state j. In this framework, 

we consider only the presence or absence of a variant, rather than 
the VAF quantity, so pi,j is equal to the true-positive rate when  
the inferred VAF is above the 0.019% VAF LoD and comparison 
genotype i is either a homozygous variant or heterozygous. Thus, 
equation (4) can be rewritten as:

Lj = Pr(TP)TP × Pr(TN)TN × Pr(FP)FP × Pr(FN)FN (5)

where Pr(TP) is the probability of a true positive based on Fig. 3d 
and TP is the number of true positives for genotype j, TN is the 
number of true negatives, FP is the number of false positives and FN 
is the number of false negatives. Figure 4a shows graphical examples 
of the likelihood computation for two different genotypes; the cor-
rect comparison genotype has a much higher likelihood L than the 
incorrect genotype.
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Figure 4b displays the log-transformed value of L for every pair-
wise combination of the 21 mBDA NGS libraries in Fig. 3a and 35 
different comparison genotypes. The genotype of contaminant D40 
was intentionally withheld from the database to observe the effects 
of an unknown contaminant. In all cases other than D40, the correct 
genotype yielded the highest L value. In the case of contamination 
by D40, no comparison genotype produced a very high L but all L 
values were notably higher than the uncontaminated DNA sample 
(Fig. 4c). The L value of the correct contaminant genotype decreased 
for samples with very low fractions of contaminant (Fig. 4d); the 
D10 contaminant sample had the lowest contaminant fraction 
(0.07%) and corresponded to the lowest value of L for the correct 
genotype. However, based on the distribution of the second-highest 
values of L, even D10 could be confidently called with six standard 
deviations of confidence (P < 10−9).

Cell-line contamination screening using qPCR. Quantitative 
PCR (qPCR) is by far the most commonly used method for detect-
ing DNA markers due to its reliability, ease-of-use and short 

turn-around time. Quantitative PCR can be effectively used to detect 
unique DNA sequences of a known contaminant. For example, the 
qPCR-based detection of mycoplasma contamination of human 
cell lines is well-established as a method for detecting inter-species 
contamination24. However, there are many potential human cell-line 
contaminants. Studies report that the top-ten most common con-
taminants collectively only account for about 50% of all known con-
tamination cases25. To our knowledge, no qPCR methods have been 
reported that allow for the detection of arbitrary conspecific DNA 
contamination.

Here we show that mBDA is compatible with qPCR and can be 
used to build rapid and easy-to-use assays for detecting arbitrary 
conspecific cell or DNA contamination. In our mBDA qPCR imple-
mentation, we designed an mBDA primer–blocker set that spe-
cifically suppresses a set of SNP alleles on which the desired cell 
line is homozygous. When the set of selected SNPs is sufficiently 
large, the genotype of any contaminating DNA is likely to differ 
from the desired cell line in at least one of the SNPs in the panel. A 
double-stranded intercalating dye such as SybrGreen can be used 
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much higher value of L than incorrect contaminants. We calculated the log10L values to be −33.4 and −5.2 for D3 and D1, respectively. b, Heatmap plot of 
the log10L values for all pairwise combinations of all of the 21 samples tested (with a contamination fraction of 0.07–0.22%) versus 35 database genotypes. 
c, Representative distributions of log10L for four different samples. D2, typical sample with a contaminant genotype that exists in the database. D10, sample 
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to report the total quantity of PCR amplicons. In an ideal mBDA 
qPCR implementation with an infinite EF, an uncontaminated 
sample of cell-line DNA would give no amplification, and even an 
infinitesimal contamination could be detected and quantitated via 
the amplification cycle threshold (Ct).

Although the closed-tube nature of qPCR reactions minimizes 
the contamination risk, it precludes solid-phase reversible immobi-
lization bead-based size selection steps that mitigate primer dimers 
and non-specific genomic amplification. Thus, we found that the 
full 80-plex panel developed for NGS exhibited notable primer 
dimers that generated a small qPCR Ct value even in the absence of 
DNA templates. We found that a reduction in the mBDA panel size 
to a 40-plex notably improved our qPCR LoD for detecting con-
taminants, and a reduction to a 21-plex resulted in an additional 
marginal improvement (Supplementary Section 7).

Figure 5a,b shows the qPCR detection of DNA samples with  
various fractions of HeLa contaminant in NA18537 using a 21-plex 
SNP assay. HeLa was selected as the contaminant because it is the 
most frequent source of human cell and DNA contamination, 
accounting for roughly 25% of all reported cases25. Of the 21 SNP 
loci in the qPCR assay with NA18537 as the intended genotypes, 
HeLa had 17 variant alleles (Fig. 5a). The mean qPCR Ct values 
observed for uncontaminated NA18537 versus NA18537 with 

0.1% HeLa were dramatically statistically different, with a P value  
of 1.8 × 10−30.

We expected that the 21-plex qPCR assay would be able to detect 
arbitrary human mutations due to the low probability that a con-
taminant would have an identical genotype to the intended cell line 
in the 21 SNP loci. To experimentally support this hypothesis, we 
next ran the 21-plex mBDA qPCR assay on NA18537 with 5% con-
taminant from 37 different human DNA samples (Fig. 2c). The con-
taminants included DNA from common cell lines as well as DNA 
from volunteer individuals. All 5% contaminant samples could be 
confidently differentiated from the uncontaminated sample and the 
large ΔCt difference suggested that all of the contaminants could be 
detected at 1% using qPCR.

Our simulations suggested that any arbitrary cell line would 
be homozygous in at least 21 of the 80 SNP loci that we built our 
mBDA NGS panel for (Supplementary Section 8). Of a 21-plex 
subset mBDA panel, our analysis and simulations suggested that 
there would be at least eight variant alleles out of the 21 SNP loci 
for an arbitrary human-cell contaminant, based on the population 
frequencies of each SNP allele reported in the 1000 Genomes data-
base22. To help readers who work with cell lines construct their own 
qPCR panels to detect contamination in their cell lines, we have pro-
vided mBDA designs for both alleles of the 80 SNPs (Supplementary 
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Dataset). We envision that the genotype of the intended cell line, if 
unavailable in public databases, can be quickly and inexpensively 
obtained through Sanger sequencing, a small microarray or a small 
NGS library (without mBDA).

Although we expect that the primary interest of cell-line 
researchers is to detect arbitrary contaminants in known cell lines, it 
is also possible to use mBDA qPCR assays to detect known contami-
nants without genotype information regarding the specific intended 
cell line. In this scenario, we selected SNP loci in which the alter-
nate allele has an extremely low frequency in the population and 
the contaminant is heterozygous. As a demonstration, we designed 
a three-plex mBDA assay for HeLa-specific SNPs and experimen-
tally demonstrated that we could detect 1% HeLa contaminant in 
eight different cell lines with unknown genotypes (Supplementary 
Section 9).

Melanoma mBDA NGS panel reveals frequent heterogeneity 
in tumour tissue samples. Most qPCR-, Sanger- and NGS-based 
assays and panels for oncology targeted therapy selection26–28 have 
mutation-VAF sensitivities of between 1% and 5%, and are thus 
unable to identify low-VAF drug-resistance mutations arising from 

trace subclones due to tumour heterogeneity. However, under the 
selective pressures of targeted therapy, tumour subclones with 
drug-resistance mutations can rapidly expand and cause treat-
ment failure or cancer recurrence29–32. Thus, the reliable detection 
of low-VAF drug-resistance mutations can inform personalized 
treatment selection, including the use of combination therapies, to 
improve patient outcomes.

To address this challenge, we next constructed a 16-plex mBDA 
NGS panel covering 145 commonly observed melanoma muta-
tions across nine genes (Fig. 6a). The BDA enrichment regions were 
designed to cover the most frequently observed mutations in the nine 
genes, based on the COSMIC database33. Because this cancer panel 
covers a range of different mutations, we arbitrarily selected one of 
the two DNA strands to be the target strand for blocker binding, 
unlike the case of SNP detection where we can intentionally target 
the strand with a larger mismatch thermodynamic penalty. We ran 
calibration NGS experiments using human gDNA (NA18537) spiked 
in with different quantities of synthetic gene blocks with a length of 
490–500 nucleotides (nt) to measure the VAF LoD and EF values 
for the cancer mutations (see Supplementary Section 10 for refer-
ence sample preparation and EF calibration details). To analytically  
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(n = 19 clinical tumour samples). This melanoma mBDA NGS panel covers nine genes and 145 mutations in the COSMIC database; the panel comprises 
a 16-plex mBDA reaction (see Supplementary Section 10 for contents). The samples were de-identified; 50 ng extracted DNA was used as input for each 
library. The number of NGS reads for each sample ranged from 45,844 to 89,718. b, Comparison of the inferred VAFs for mBDA and standard amplicon 
NGS. The blue dashed lines show the VAF LoD of 5% achievable by NGS without UMIs. The horizontal green dashed line shows 0.2% VAF LoD. The region 
shaded in pink shows the eight mutations identified by the mBDA panel at a VAF of between 0.2% and 5%. The boxed outlier corresponds to an AKT1 
mutation in the NSCLC sample with extremely low sequencing depth in the amplicon NGS panel (one mapped read). The sequencing depth for the AKT1 
amplicon in the melanoma samples was 3,058 and 4,788, indicating that this outlier may be specific to the NSCLC sample. c, Comparison of the inferred 
VAFs for mBDA and deep sequencing with UMIs for cfDNA samples from blood plasma from patients with Stage IV NSCLC. This mBDA panel comprises 
31 amplicons across 14 genes; the quantities of input cfDNA ranged from 6.0 to 18.9 ng. Aliquots of these cfDNA samples were also analysed for tumour 
mutations through deep sequencing with UMIs following a previously published method49. The region shaded in yellow indicates VAF agreement to within 
a factor of two. There is one EGFR exon-19 ELREA deletion outlier in which mBDA called 2.7% VAF and deep sequencing called 20.2% VAF. In another 
sample, the same EGFR exon-19 ELREA deletion was called as 8.7% and 7.2% VAF by mBDA and deep sequencing, respectively. One of the tested clinical 
cfDNA samples was excluded from this analysis because of a strong suspicion of sample mislabelling (sample R in Supplementary Data). Samples are 
colour-coded as per the legend in b.
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validate the accuracy of our mBDA NGS panel in the detection and 
quantitation of mutations with a low VAF, we performed compari-
son experiments on spike-in samples against the BioRad QX200 
droplet digital PCR (Supplementary Section 11).

We applied the melanoma mBDA NGS panel to a total of 19 clini-
cal fresh/frozen tumour samples purchased de-identified from a com-
mercial supplier; 18 of these were melanoma tissue samples and one 
was a non-small-cell-lung-cancer (NSCLC) tissue sample. All samples 
had a tumour fraction of at least 75%, based on histological analysis. 
The called variants are summarized in Fig. 6b and Supplementary 
Section 10. A total of 7 of the 19 samples (37%) had mutations with 
a low VAF of between 0.2% and 5%. The 95% confidence interval of 
fresh/frozen tumour samples with low-VAF mutations is 19–58%, 
based on binomial distribution analysis. To confirm our findings, 
we performed droplet digital PCR comparison experiments for these 
fresh/frozen tissues as well as four formalin-fixed paraffin-embedded 
(FFPE) tissue samples (Supplementary Section 11).

As part of our design and bioinformatics interpretation pro-
cess, we designed primers and blockers to avoid non-pathogenic 
SNPs with population allele frequencies above 1% using the 1000 
Genomes and Kaviar databases. The high-VAF oncogene mutations 
that we observed in the tumour samples, such as BRAF-V600E and 
NRAS-Q61K, are not reported to be present in the population at 
notable frequencies, presumably due to the strong selective pressure 
against individuals with these mutations. Consequently, we believe 
these are likely to be somatic tumour mutations, although we can-
not be sure without matched normal tissue or blood samples.

Interestingly, all samples with low-VAF subclonal mutations also 
had at least one high-VAF mutation (Table 1). A χ2 analysis weakly 
suggests that the presence of low-VAF and high-VAF mutations are 
not statistically independent (P = 0.046). In other words, the pres-
ence of low-VAF subclonal drug-resistance mutations seems to be 
higher in tumour samples with high-VAF clonal mutations.

Validation on clinical cfDNA samples. Cell-free DNA in peripheral 
blood represents a promising class of biomarkers for non-invasive 
tumour profiling and can be useful in cancer management not 
only for therapy selection in cases where a tumour biopsy is not 
convenient but also longitudinally for post-treatment monitoring. 
Detection of actionable mutations in cfDNA is also well-suited for 
mBDA, given that the mutation VAFs in cfDNA can be quite low 
(<1%) because of the wild-type cfDNA derived from healthy dying 
cells as a normal part of homeostasis.

Here we validate the effectiveness of mBDA NGS panels on 
clinical cfDNA samples from patients with Stage IV NSCLC. The 
mBDA panel covers 31 hotspots in 14 genes (AKT1, ALK, BRAF, 
DDR2, EGFR, ERBB2, KRAS, MAP2K1, MET, NRAS, PIK3CA, 
PTEN, ROS1 and TP53) and was commercially developed by 
Nuprobe as the VarMap NSCLC panel. The called mutations and 
their VAF were compared against the VAF called by deep sequenc-
ing using UMIs. Across a total of 528 loci (12 samples × 44 loci), 
we observed a 78% positive-concordance rate (14/18) and a 98.6% 
negative-concordance rate (503/510). Qualitative and quantitative 
concordant calls were made for mutations with a VAF as low as 
0.23% in clinical samples (Supplementary Dataset).

Discordant calls were observed for mutations with a VAF of up 
to 1.3% for samples with very low input DNA quantities (6 ng); 
6.0 ng cfDNA corresponds to about 1,800 haploid genomic copies 
and 1.3% VAF corresponds to 23.4 expected mutant molecules. The 
conversion yield of an NGS panel is the fraction of original DNA 
molecules at a locus that are represented in the final NGS library. 
For commercial hybrid-capture NGS panels, the median conver-
sion yield is roughly 20%, so 4.6 of the 23.4 mutant DNA molecules 
theoretically present in the sample are expected to be represented 
in the NGS library. The number of actual mutant molecules in the 
NGS library follows a Poisson distribution and there is an 83.7% 
probability that a random sample will have three or more molecules. 
Consequently, some discordance can be expected even at the 1.3% 
VAF level, due to sampling.

Discussion
The mBDA technology presented here notably scales the multi-
plexing of BDA to 80-plex and demonstrates integration with NGS 
to allow broad detection and quantitation of rare DNA mutations 
with a VAF LoD of ≤0.1%. Although allele-enrichment methods 
have been extensively researched (for example, ICE-COLD PCR19, 
Boreal Genomics34, PNA/LNA blocker PCR35, nuclease-assisted 
minor-allele enrichment36 and CUT-PCR37), we are not aware of 
any other allele-enrichment technologies that have been success-
fully scaled and integrated with NGS to allow low-depth sequenc-
ing analysis of low-VAF mutations in settings of more than tenplex. 
Generally speaking, other allele-enrichment methods are sensitive 
to operational conditions (temperature, time and enzyme/DNA 
purity). This renders multiplexed panels challenging to design and 
optimize because variant alleles from multiple loci may enrich opti-
mally at different conditions.

Table 1 | Comparison of the performance of different NGS methods in profiling somatic mutations

mBDA (this 
work)

SafeSeqS/OncoMine/
AmpliSeq

CAPP-Seq/Guardant 360/
FoundationOne Liquid

Standard NGS

VAF LoD (%) 0.1 0.1 0.1 5

Depth required 250× 25,000× 60,000× 500×

UMI No Yes Yes No

Library preparation time (h) 6 6 24 24

Reads per sample for a 100 kb panel (×106) 1.2 25 36 0.3

MiniSeq NGS cost per sample (US$) 90 1,875; impossible 2,700; impossible 22.50

MiniSeq sample no. for full loading 16 0.80 0.56 66

NovaSeq NGS cost per sample (US$) 6.50 136 195 1.63

NovaSeq sample no. for full loading 2,800 132 92 11,000

Only mBDA and standard NGS are feasible on the lower-throughput NGS platforms, such as the MiniSeq, and only standard NGS is incapable of detecting VAFs that are notably <5%. In contrast, mBDA 
is unsuitable for high-throughput NGS platforms, such as the NovaSeq, due to the large number of samples that must be pooled to leverage the economies of scale of the instruments. The NGS cost for 
MiniSeq assumes US$1,500 for 20 × 106 reads on a 2 × 150 nt flow cell; the NGS cost for NovaSeq assumes US$18,000 for 3.3 × 109 reads on a S2 2 × 150 nt flow cell. For mBDA, an enrichment region of 
20 nt per 90 nt amplicon is assumed. SafeSeqS, OncoMine and AmpliSeq assume 140 nt amplicons on average to generate 100 nt of usable sequence. CAPP-Seq, Guardant 360 and FoundationOne Liquid 
assume 160 nt DNA input.
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In this work, we first demonstrated mBDA using an 80-plex 
amplicon panel that covered approximately 8,000 nt in total and 
performed allele enrichment on about 1,600 nt.

Given our observed on-target rates of more than 80%, we do 
not think that primer dimers and non-specific amplification are 
at present the bottleneck for scaling up mBDA. Primer dimers are 
typically much shorter than on-target amplicons, and non-specific 
genomic amplification results in amplicons that are typically much 
longer than on-target amplicons. Consequently, the vast majority 
of primer dimers and non-specific amplicons can and are removed 
through solid-phase reversible immobilization bead-size selection. 
Commercial amplicon target-enrichment NGS panels (for example, 
AmpliSeq) include up to 24,000-plex PCR primers, so we expect 
that scaling up mBDA to over 1,000-plex in a single tube should be 
possible with some experimental optimization.

In its present design, the mBDA technology is primarily directed 
to the detection and quantitation of mutations and small inser-
tions/deletions in hotspot regions. Thus, mBDA is well-suited for 
the detection of actionable cancer mutations in clinical guidelines, 
such as those of the National Comprehensive Cancer Network, as 
well as to personalized mutations found from initial whole-exome 
sequencing or whole-genome sequencing analysis of tumour biop-
sies38. For standard single-base-replacement mutations, we are able 
to achieve mBDA success rates of well over 95%, with failures pri-
marily due to extremely high G/C content or context sequences 
with highly repetitive DNA sequences that cause PCR mispriming. 
We observed a slightly worse performance in enriching single-base 
insertions and deletions from homopolymeric repeats of over 6 nt, 
but these are sequences that all PCR and NGS struggle with.

However, mBDA is less suitable for the discovery of new muta-
tions across the entire exon regions of many genes and is unsuitable 
for the discovery of new structural variations (for example, chro-
mosomal translocations). To comprehensively detect mutations in 
tumour-suppressor genes such as BRCA1/BRCA2, we would need 
to pursue a split-tube strategy, wherein the exons are tiled by differ-
ent amplicons split across multiple tubes. Tube splitting is needed 
for most amplicon sequencing approaches for comprehensive exon 
coverage because mutations in the regions covered by primers can-
not be detected in amplicon sequencing; different primers in tube 
2 are needed to detect potential mutations in loci covered by the 
primers in tube 1.

For SNVs with VAFs between 0.03% and 3%, we showed that 
results from mBDA NGS could accurately quantitate sample VAF 
through a mathematical transformation assuming conserved EF 
values, with up to 95% accuracy within a factor of two. For low-VAF 
somatic mutations, quantitation accuracy is frequently limited by 
biological variability. Even adjacent tissue sections can have dif-
ferent VAFs and a wide range of biological factors (for example, 
exercise, time of day and bacterial/viral infection) affect the 
tumour-mutation VAF in cfDNA. However, mBDA suffers from less 
accurate VAF quantitation when the initial VAF and/or EF is very 
high. For example, a 10% VAF sample with EF = 10,000 would result 
in an mBDA library VRF of 99.9%, which cannot be accurately 
quantitated for the same reason that a VRF of 0.1% cannot be accu-
rately quantitated. When accurate quantitation of mutations with a 
high VAF is needed, we recommend constructing a standard ampli-
con NGS library with low sequencing depth (for example, 250×) in 
addition to the mBDA library. The mBDA library will accurately 
quantitate low VAFs of 0.03–3% and the standard amplicon library 
will accurately quantitate VAFs of 3–97%.

We demonstrated mBDA using a panel of non-pathogenic 
human SNPs and showed that it could be used for the detection 
of human cell-line contamination in both NGS and qPCR settings. 
Cell lines serve as critical models for biomedical research, allowing 
the use of effective and inexpensive experiments to understand the 
function of cells and organisms as well as to establish feasibility for 

potential therapeutics39–41. However, contamination and misidenti-
fication of cell lines have become widespread problems that limit the 
reproducibility of experimental results and threaten the validity of 
published conclusions42–44. Recent estimates suggest that up to 35% 
of cell lines in use today suffer from contamination and the findings 
of over 30,000 research publications may be compromised45. With 
our mBDA qPCR assays, researchers will be able to detect low-level 
contamination with less than 1% conspecific DNA, increasing the 
rigour of scientific research based on cell lines.

As a proof-of-concept for clinical applications of mBDA-based 
NGS panels, we constructed a 16-plex melanoma mBDA NGS panel 
and applied it to 19 tumour tissue samples. We found that 37% of 
the samples (95% confidence interval of 19–58%) contained detect-
able subclonal mutations, including known drug-resistance muta-
tions, in our panel at a VAF of between 0.2% and 5%. Furthermore, 
we expect that the fraction of patient tumour samples with low-VAF 
mutations would be higher given a broader panel covering more 
genes and loci. The increase in drug-resistance mutations in 
patients undergoing targeted therapies has generally been consid-
ered as a combination of an increase in de novo mutation(s) dur-
ing treatment and the expansion of pre-existing subclones with the 
resistance mutation(s). Our results here statistically indicate that the 
latter mechanism may be applicable to a notable fraction of patients. 
Alternatively, reports of genomic heterogeneity of somatic muta-
tions in the skin of healthy ageing individuals46 suggest that the cor-
relation between low-VAF and high-VAF mutations may be due to 
more complex mechanisms not yet fully understood.

In this work, we applied the mBDA NGS panel to fresh/frozen 
tumour tissue, rather than FFPE tissue, because of well-documented 
deamination and oxidation damage to FFPE DNA47,48. With fresh/
frozen tissue samples we can be more confident that the low-VAF 
mutations called are truly indicative of subclonal mutations due to 
tumour heterogeneity rather than artifacts from DNA damage.

In our preliminary experiments applying mBDA panels to mela-
noma FFPE samples, we observed systematic cytosine deamination 
damage resulting in C > T and G > A false positives at a VAF of up 
to 0.6%. Because we typically set our LoD reporting cutoff at double 
the highest observed false-positive VAF, this means that for FFPE 
samples, we cannot report C > T and G > A variants at a VAF below 
1.2%. Other mutations, such as the BRAF-V600E T > A mutation, 
can still be reported at a VAF as low as 0.1%. However, because the 
extent of FFPE damage is highly dependent on the age and the stor-
age/handling of the sample, it is not generalizable to determine the 
VAF LoDs across different FFPE samples. Thus, for FFPE samples, 
we expect to determine the LoD for different types of mutations 
within the same sample by designing BDA to other portions of the 
genome that are not expected to be mutated (for example, house-
keeping genes such as GAPDH).

To date, all NGS panels that achieve a VAF LoD of 0.1% use 
UMIs with ultra-deep sequencing of a depth of more than 25,000×. 
This renders rare-mutation profiling feasible only on instruments 
with the highest throughput NGS, such as the NovaSeq (Table 1). 
However, the high capital expense (roughly US$1,000,000 for a 
NovaSeq) and the large number of samples that need to be pooled 
to obtain economies of scale render high-throughput NGS instru-
ments out of reach for most hospitals and reference laboratories. 
By enabling accurate and quantitative sequencing of low-VAF 
mutations using a depth of only 250×, our technology allows NGS 
instruments with a lower throughput (for example, a US$50,000 
MiniSeq) to analyse clinical samples for low-VAF mutations across 
many genes. The reduced sequencing reads required by mBDA also 
manifests as a notable reduction in the bioinformatics analysis time 
and data storage. Some other aspects of NGS analysis, most notably 
DNA extraction kits, are not reduced by mBDA, but these are cur-
rently less than US$20 per sample and are not the dominant cost 
consideration for tumour or cfDNA sequencing. We envision that 
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facilitating the decentralized NGS testing of clinical samples for 
low-VAF somatic mutations will accelerate the adoption of preci-
sion medicine and lead to improvements in patient outcomes.

Methods
Primer and blocker oligonucleotides. Primers and blockers were purchased from 
Integrated DNA Technologies. All DNA oligos were purchased with standard 
desalting and LabReady formulation (100 μM in Tris–EDTA pH 8.0; Integrated 
DNA Technologies). The DNA stock solutions were diluted to 5 μM using 1 × TE 
buffer (purchased from Sigma Aldrich as a 100× stock solution, cat. no. 574793). 
All primers and blockers can be stored at 4 °C.

Cell-line and human DNA samples. All experiments were conducted in 
compliance with all of the relevant ethical regulations. Human gDNA samples 
(NA18562, NA18537, NA19223, NA12815, NA20507, NA18545, NA18572 and 
NA20502) were purchased from Coriell Biorepository and stored at −20 °C.

HeLa cell-line DNA was ordered from New England Biolabs (cat. no. N4006S). 
K562, T24 and PC3 cells were obtained from collaborators and DNA was extracted 
using standard methods. Fresh/frozen cancer tissue samples were ordered from 
OriGene Technologies Inc.

Volunteer DNA samples. This research is classified as IRB Exempt under NIH 
Exemption 4. Buccal swabs samples were collected from volunteers from the 
Houston, TX area. Swabs were placed in 400 μl 1×PBS buffer in 1.5 ml tubes 
and incubated in a Multi-Therm instrument (Genesee) at 37 °C for 10 min. 
The swabs were then removed and the remaining solution was centrifuged at 
12,000 r.p.m. for 5 min. The supernatant was discarded and 200 μl PBS buffer 
was added to resuspend the cell pellet, while vortexing vigorously for 1 min. 
Next, 20 μl proteinase K and 4 μl RNase A solution (100 mg ml−1) were added and 
the suspension was vortexed for 15 s. Finally, the solution was extracted using a 
QIAamp DNA blood mini kit (Qiagen, cat. no. 51104) following the  
manufacturer’s instructions.

Blood samples were purchased from ZenBio, Inc. from consented de-identified 
volunteers from the Chapel Hill, NC area. The blood samples were centrifuged at 
500 r.p.m. for 15 min to separate the plasma, red blood cells and buffy coat. DNA 
was extracted from the buffy coat using a QIAamp DNA blood mini kit following 
the manufacturer’s instructions.

NGS library preparation protocol for mBDA. For each library, the DNA sample 
was first mixed with the appropriate concentrations of primers and blockers, and 
then underwent 23 cycles of PCR using Phusion hot start flex DNA polymerase 
(New England Biolabs, cat. no. M0535L). The reaction volume was 50 μl and the 
thermocycling protocol included an initial 98 °C denaturation for 30 s, followed 
by 23 cycles of 98 °C for 10 s, 63 °C for 5 min and 72 °C for 2 min. The amplicon 
products were then purified from the reaction mixture using a column-based DNA 
clean and concentrator kit (Zymo Research, cat. no. D4005).

Next, we appended sequencing adaptors to the BDA amplicons via two cycles 
of PCR using adaptor primers. The forward and reverse adaptor primers were each 
at a final reaction concentration of 15 nM in a reaction volume of 50 μl. The same 
PCR thermocycling protocol as described above was applied for two cycles, and 
the amplicons were subsequently re-purified using a DNA clean and concentrator 
kit. We then optionally quantitated the adaptor-appended amplicons using qPCR 
(BioRad iTaq SYBR Green supermix, cat. no. 1725122; 95 °C for 3 min, followed by 
40 cycles of 95 °C for 10 s and 60 °C for 30 s). The observed Ct value was determined 
using the BioRad software.

We then perform index PCR using the Illumina Nextera sequences as index 
primers. Here, we used Phusion hot start flex DNA polymerase (New England 
Biolabs, cat. no. M0535L) and added 5 μl of the index primers into the final 
50 μl reaction, and followed the following thermocycling protocol: 98 °C for 30 s, 
followed by 11 cycles of 98 °C for 10 s, 63 °C for 1 min and 72 °C for 1 min.  
If qPCR was used in the previous step, we would instead perform index PCR for 
Ct + 4 cycles.

Before the next step of amplicon size selection, we incubated AMPure beads 
at room temperature for 30 min. The prepared AMPure beads (Beckman Coulter, 
cat. no. A63881) were then used to size select the NGS library; ratios of 0.7× and 
0.3× AMPure beads were used (that is, 0.7× means 50 μl library and 35 μl AMPure 
beads). After size selection, we used a Qubit dsDNA HS kit (Thermo Fisher, cat. 
no. Q32851) to determine the concentration of the library and a Bioanalyzer 
DNA 1000 kit (Agilent, cat. no. 5067-1504) was used to quantify the length of the 
amplicons to ensure the library quality. Different libraries were pooled to a final 
concentration of 4 nM and loaded onto an Illumina MiSeq instrument following 
standard protocols with 5–10% PhiX.

NGS library preparation protocol for standard multiplex PCR amplicons 
without blockers. The protocol used was mostly the same as the ‘NGS library 
preparation protocol for mBDA’ protocol, except that the number of PCR cycles in 
the first step was reduced from 23 to 13 cycles. In addition, for historical  
reasons, during size selection we used 0.6× and 0.3× AMPure beads (instead of 

0.7× and 0.3×); we do not expect this difference to make a notable difference in  
our conclusions.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The main data supporting the results in this study are available within the paper 
and its Supplementary Information. All requests for raw and analysed data will be 
reviewed by the Legal Department of Rice University to verify whether the request 
is subject to any intellectual property or confidentiality constraints. Requests for 
patient-related data not included in the paper will not be considered. Data can be 
shared for non-commercial research purposes via a material transfer agreement.

Code availability
All requests for code will be reviewed by the Legal Department of Rice 
University to verify whether the request is subject to any intellectual property 
or confidentiality constraints. Custom code can be shared for non-commercial 
research purposes via a material transfer agreement.
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Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

The main data supporting the results in this study are available within the paper and its Supplementary Information. All requests for raw and analysed data will be 
reviewed by the Legal Department of Rice University to verify whether the request is subject to any intellectual property or confidentiality constraints. Requests for 
patient-related data not included in the paper will not be considered. Data can be shared for non-commercial research purposes via a material transfer agreement.
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Life sciences study design
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Sample size No sample-size calculation was carried out during experiment design.

Data exclusions One clinical cfDNA sample was excluded on strong suspicion of sample mislabelling.

Replication Replicates of the of initial analytical-validation experiments were performed, as summarized in the paper and its Supplementary Information.

Randomization No experiments were randomized.

Blinding The experiments were not blinded.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Human research participants
Policy information about studies involving human research participants

Population characteristics No inclusion criteria were established for the SNP studies. Melanoma tumour samples were purchased, with the inclusion criteria 
that fresh/frozen tissue slides must contain at least 50% of tumour.

Recruitment Consented volunteers from the Houston area contributed de-identified blood samples for the SNP experiments. Other samples 
were purchased commercially or provided by clinical collaborators in de-identified format.

Ethics oversight This research is classified as IRB-exempt under NIH Exemption 4.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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